
A BRIEF FOUNDATION OF THE LEFT-SYMMETRIC
                         DIALGEBRAS

Raúl Felipe

Comunicación del CIMAT No I-11-02/18-03-2011 
(MB/CIMAT)



 
 

A brief foundation of the Left-symmetric

dialgebras
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Abstract

For introducing the concept of left-symmetric dialgebras, which in-
cludes as a particular case the notion of dialgebras, we can give a new
impulse to the construction of Leibniz algebras and the geometric struc-
tures defined on them.
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Introduction

In 1993, J. L. Loday introduced the notion of Leibniz algebra (see [11]), which
is a generalization of the Lie algebras where the skew-symmetric of the bracket
is dropped and the Jacobi identity is changed by the Leibniz identity. Loday
also showed that the relationship between Lie algebras and associative alge-
bras translates into an analogous relationship between Leibniz algebras and the
so-called diassociative algebras or associative dialgebras (see [11]) which are a
generalization of associative algebras possessing two products. In particular Lo-
day showed, among other things, that any dialgebra (D,a,`) becomes a Leibniz
algebra DLeib under the Leibniz bracket [x, y] := x a y − y ` x.

Until now it is commonly accepted the exclusive role of the dialgebras in the
construction of the Leibniz algebras, and as such these have received an intense
attention. In this work we will show that there is an algebraic structure with
two products slightly more complicated in its definition that a dialgebra which
contains it as a particular case.

One of the concepts that in this paper we would like to introduce is the
analogue of a left-symmetric algebra for a Leibniz algebra and it should be
called left di-symmetric algebra or left-symmetric dialgebra. As we shall see
later any of these new algebras generates a Leibniz algebra . It is then natural
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that in the course of our research we try use the tools already established for
the study of dialgebras.

Next, we introduce some definitions and results of the classic theory of left-
symmetric algebras. An algebra (A, ·) over K with product x · y is called a
left-symmetric algebra (LSA) or a left pre-Lie algebra, if the product is left-
symmetric, i.e., if the identity

x · (y · z)− (x · y) · z = y · (x · z)− (y · x) · z, (1)

is satisfied for all x, y, z ∈ A.
The reader can consult [1] and [4] for an introduction about left-symmetric

algebras. These left-symmetric algebras arise both in physics as in mathematics.
Moreover, we must say that they were initially introduced by Cayley in 1896,
and quickly forgotten until the 1960s of the past century, moment in which
reappeared in the works of Vinberg and Koszul in the context of convex homo-
geneous cones (see for instance [14]) and independently it were introduced also
by Gerstenhaber.

The associator (x, y, z) of three elements x, y, z ∈ A is defined by (x, y, z) =
x · (y · z) − (x · y) · z. Thus (A, ·) is a (LSA) if (x, y, z) = (y, x, z). An algebra
is called RSA, if the identity (x, y, z) = (x, z, y) is satisfied. It is clear that the
opposite algebra of an LSA is an RSA. An associative product is right- and left-
symmetric. The converse is not true in general. Notice that LSA and RSA are
examples of Lie-admissible algebras, i.e., the commuter

[x, y] = x · y − y · x, (2)

define a Lie bracket. We denote the Lie algebra by gA.
There are many examples of left-symmetric algebras appearing in geometry

and mathematical physics. Now we present some of them.
Let g a n−dimensional Lie algebra over R. An affine structure on g is given

by a bilinear mapping
5 : g× g −→ g,

satisfying
5(x, y)−5(y, x) = [x, y],

5(x,5(y, z))−5(y,5(x, z)) = 5([x, y], z),

for all x, y, z ∈ g. Then the product x · y = 5(x, y) endows the vector space g
with a structure the left-symmetric algebra.

The following example is due to S. Gelfand. Let (A, ·) be a commutative
associative algebra, and let D be a derivation of A. Then the new product

a ∗ b = a ·Db, ∀a, b ∈ A,

makes (A, ∗) become a left-symmetric algebra.
Let V be a vector space over the complex field C with the usual inner product

(., .) and let a be a fixed vector in A, then

u ∗ v = (u, v)a+ (u, a)v,

for all u, v ∈ V defines a left-symmetric algebra on V .
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Let (A, ·) be an associative algebra and let R : A −→ A be a linear map
satisfying

R(x) ·R(y) +R(x · y) = R(R(x) · y + x ·R(y)),

for any x, y ∈ A. Then

x ∗ y = R(x) · y − y ·R(x)− x · y, ∀x, y ∈ A,

defines a left-symmetric algebra on A. The linear map R is called Rota-Baxter
map of weight 1.

Also it is well known that left-symmetric structures appear of natural way
in the theory of integrable systems of hydrodynamic type and the integrable
generalized Burgers equation.

We would like comment that recently C. Bai, L. Liu and X. Ni have intro-
duced the notion of L−dendriform algebra which constitutes a vector space with
two bilinear products from which one can construct a left-symmetric algebra,
that is, it is the Lie algebraic analogous of a dendriform dialgebra (see [2] and
[3]). It is easy to show that the concept of left-symmetric dialgebra defined
by us here is not a L−dendriform algebra neither coincides with the concept of
dendriform dialgebra such as was introduced by Loday in [11] and [12]. For con-
clude this part and continuing the connection with the work of other authors we
must inform that in [10], D. Liu introduced the notion of alternative dialgebra.

Thus, the main objective of this paper is to introduce the concept of left-
symmetric dialgebra and to show its relationship with the Leibniz algebras. At
the end of this work the emphasis is made in the study of affine transformations
over this new structure that allows us give new classes of Leibniz algebras. On
other hand, in opinion of the author all the work shows the strong geometric
flavor of the left-symmetric dialgebras.

A review of Leibniz algebras and dialgebras

Around 1990, J. L. Loday introduces a non-antisymmetric version of Lie alge-
bras, whose bracket satisfies the Leibniz relation (see (3)) and hence it is called
Leibniz algebra. The Leibniz relation, combined with antisymmetry, leads to
the Jacobi identity. Therefore Lie algebras are anti-symmetric Leibniz algebras.
In [12], Loday also introduces an associative version of Leibniz algebras, called
diassociative algebras or dialgebras, equipped with two bilinear and associative
operations, ` and a, which satisfy three axioms all of them being variations of
the associative law.

In this part we briefly surveying the theory of Leibniz algebras and dialge-
bras.

Definition 1 A Leibniz algebra over a field K is a K-vector space L equipped
with a binary operation, called Loday bracket, [·, ·] : L × L → L which satisfies
the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y] , for all x, y, z ∈ L. (3)

If the bracket is skew-symmetric, then L is a Lie algebra. Therefore Lie
algebras are particular cases of Leibniz algebras.
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Example 1 Let L be a Lie algebra and let M be a L-module with action M ×
L→M , (m,x) 7→ mx. Let f : M → L be a L-equivariant linear map, this is

f(mx) = [f(m), x] , for all m ∈M and x ∈ L,

then one can put a Leibniz structure on M as follows

[m,n]′ := mf(n) , for all m,n ∈M.

Additionally, the map f defines a homomorphism between Leibniz algebras, since

f([m,n]′) = f(mf(n)) = [f(m), f(n)]

Example 2 Let (A, d) be a differential associative algebra. So, by hypothesis,
d(ab) = da b+ a db and d2 = 0. We define the bracket on A by the formula

[a, b] := a db− db a,

then the vector space A equipped with this bracket is a Leibniz algebra.

It follows from the Leibniz identity (3) that in any Leibniz algebra we have

[x, [y, y]] = 0, [x, [y, z]] + [x, [z, y]] = 0.

The Leibniz algebras are in fact right Leibniz algebras. For the opposite
structure (left Leibniz algebras), that is [x, y]′ = [y, x], the left Leibniz identity
is

[[x, y]′, z]′ = [y, [x, z]′]′ − [x, [y, z]′]′. (4)

The notion of dialgebra is a generalization of an associative algebra with two
operations which gives rise to a Leibniz algebra instead of Lie algebra.

Definition 2 A dialgebra over a field K is a K-vector space D equipped with
two associative products

a: D ×D → D

`: D ×D → D

satisfying the identities:

x a (y a z) = x a (y ` z), (5)

(x ` y) a z = x ` (y a z), (6)

(x ` y) ` z = (x a y) ` z, (7)

Observe that the analogue of (6), with the product symbols pointing out-
ward, is not valid in general in dialgebras: (x a y) ` z 6= x a (y ` z).

Example 3 If A is an associative algebra, then the formula x a y = xy = x ` y
defines a structure of dialgebra on A.

Example 4 If (A, d) is a differential associative algebra, then the formulas x a
y = x dy and x ` y = dx y define a structure of dialgebra on A.
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Example 5 Let V be a vector space and fix ϕ ∈ V ′ (the algebraic dual), then
one can define a dialgebra structure on V by setting x a y = ϕ(y)x and x ` y =
ϕ(x)y, denoted by Vϕ. If ϕ 6= 0, then Vϕ is a dialgebra with non-trivial bar-units.
Moreover, its halo is an affine space modeled after the subspace Kerϕ.

If D is a dialgebra and we define the bracket [·, ·] : D ×D → D by

[x, y] := x a y − y ` x , for all x, y ∈ D,

then (D, [·, ·]) is a Leibniz algebra. Moreover, Loday showed that the following
diagram is commutative

Dias
−→ Leib

↑ ↑
As

−→ Lie

where Dias, As, Lie and Leib are denoted, respectively, as the categories of
dialgebras, associative, Lie and Leibniz algebras ([12]).

Left-symmetric dialgebras

In this section we introduce the notion of left-symmetric dialgebra.

Definition 3 Let S be a vector space over a field K. Let us assume that S is
equipped with two bilinear products, not necessarily associative

a: S × S → S

`: S × S → S

satisfying the identities:

x a (y a z) = x a (y ` z), (8)

(x ` y) ` z = (x a y) ` z, (9)

x a (y a z)− (x a y) a z = y ` (x a z)− (y ` x) a z, (10)

x ` (y ` z)− (x ` y) ` z = y ` (x ` z)− (y ` x) ` z, (11)

then we say that S is a left-symmetric dialgebra (LSDA) or a left di-
symmetric algebra.

For us is a bit surprising how this definition escaped to the attention of
specialists in the subject until now.

Let us denote by S the set of all left-symmetric dialgebra and let us reserve
the notation D for the set of all dialgebras.

Example 6 All dialgebra D is a left-symmetric dialgebra. Hence, D ⊂ S.

Example 7 Any left-symmetric algebra is a left-symmetric dialgebra in which
`=a. On the other hand a nonassociative left symmetric algebra is not a dial-
gebra. It confirms that D 6= S.
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Example 8 Let (S,`,a) be a left-symmetric dialgebra and (A, .) a left-symmetric
algebra, then S ×A is a left-symmetric dialgebra with the products ` and a de-
fined in the following form:

(x, α) ` (y, β) = (x ` y, αβ),

(x, α) a (y, β) = (x a y, αβ).

Example 9 If ((A, ·), d) is a differential left-symmetric algebra, then the for-
mulas x a y = x · dy and x ` y = dx · y define a structure of left-symmetric
dialgebra on A. It is clear that it constitutes an analogous for the Gelfand exam-
ple. Even more, let (D,`,a) be a dialgebra and δ ∈ Der(D) such that δ2 = 0,
then the products x � y = δx ` y and x ≺ y = x a δy convert D into a
left-symmetric dialgebra.

Proposition 4 A left-symmetric dialgebras S is a dialgebra if and only if both
products of S are associative.

Proof. Let the left-symmetric dialgebra S be a dialgebra, then justly both
products ` and a defined over S are associative. Let us assume now that for a
left-symmetric dialgebra S each product is associative, then from (10)

x ` (y a z)− (x ` y) a z = 0,

for every x, y, z ∈ S. Hence S is a dialgebra.
A morphism of left-symmetric dialgebras from S to S′ is a linear map f :

S → S′ such that

f(x a y) = f(x) a f(y) and f(x ` y) = f(x) ` f(y),

for all x, y in S. In what follows if there exists a morphism of left-symmetric
dialgebras between two of these structures then the products defined on these
will be denoted by the same symbols.

The main result in this part which shows the importance of the notion of
left-symmetric dialgebra can be stated as follows

Theorem 5 Let (S,`,a) be a left-symmetric dialgebra. Then the Loday com-
mutator defined before as

[x, y]S = x a y − y ` x,

defines a structure of Leibniz algebra on S. In others words, (S, [., .]S) is a
Leibniz algebra denoted by SLeib.
Proof. The proof is a straightforward checking in which the identities (8) and
(9) are used once. In fact, if we denote ΣLieb = [x, [y, z]S ]S − [[x, y]S , z]S +
[[x, z]S , y]S then

ΣLieb = (x a (y a z)− (x a y) a z)− (y ` (x a z)− (y ` x) a z)
− (x a (z a y)− (x a z) a y) + (z ` (x a y)− (z ` x) a y)
+ (y ` (z ` x)− (y ` z) ` x)− (z ` (y ` x)− (z ` y) ` x).

Now, by (10) and (11) it follows that ΣLeib = 0.
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Now equipped with the previous result we can write (10) and (11) in the
way

LaxL
`
y − L`yLax = La[x,y]S , (12)

and
L`xL

`
y − L`yL`x = L`[x,y]S , (13)

respectively for all x, y ∈ S, where L`xy = x ` y and Laxy = x a y. Thus we
have the following Theorem

Proposition 6 Let us define Leib(S) = {L`x |x ∈ S}. Then Leib(S) is a Leibniz
algebra with the commutator defined as [L`x , L

`
y ]Leib(S) = L`xL

`
y − L`yL`x .

Proof. It follows of (13).
Let f : S −→ S′ a morphism of left-symmetric dialgebras between S and S′

then for all x, y ∈ S we have

[f(x), f(y)]S′ = f(x) a f(y)− f(y) ` f(x)
= f(x a y)− f(y ` x)
= f(x a y − y ` x) = f([x, y]S).

Next, we adopt the same concept of bar-unit known for dialgebras for left-
symmetric dialgebras S. Thus a bar-unit in S is an element e in S such that

x a e = x = e ` x , for all x ∈ S.

A bar-unit needs not to be unique (because, for instance, this fact holds in
dialgebras). The subset of bar-units of S is called its halo. A unital left-
symmetric dialgebra is a left-symmetric dialgebra with a specified bar-unit e.
The problem of adding a unit-bar to left-symmetric dialgebras remains open.

Observe that if a left-symmetric dialgebra has a unit ε, which satisfies ε a
x = x = x ` ε for any x ∈ S, then from (10), we deduce a = ` and S is a
left-symmetric algebra with unit ε.

Let (S,`,a) be a left-symmetric dialgebra. Let Sann be the subspace of S
spanned by the elements of the form x a y − x ` y, for x, y ∈ S. From (8) and
(9) we conclude

x a z = 0 = z ` x, (14)

for all x ∈ S and z ∈ Sann. One can see that Sann is an ideal of S with respect
to both products. On other hand S is a left-symmetric algebra if and only if
Sann = {0}.

Let S be a left-symmetric dialgebra, a derivation of S is an element of End(S)
such that δ(x ` y) = δx ` y + x ` δy and δ(x a y) = δx a y + x a δy for every
x, y ∈ S. Der(S) denotes the set consists of all derivations of S.

In this moment it is convenient to introduce the set Z(S) = Z`(S) ∩ Za(S)
where by definition Z`(S) = {z ∈ S|z ` x = 0, ∀x ∈ S} and Za(S) = {z ∈
S|x a z = 0,∀x ∈ S}. It is clear that Sann ⊂ Z(S). Also Z(S) is an ideal
of S with respect to ` and a. Observe that if e ∈ S is a bar unit of S, then
δe ∈ Z(S). On other hand, let us suppose that the left-symmetric dialgebra S
has a bar unit then Sann = Z(S). In fact, let e ∈ S be a bar unit then for any
z ∈ Z(S) we have z = z a e− z ` e ∈ Sann, thus Z(S) ⊂ Sann.
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Lemma 7 Let S be a left-symmetric dialgebra and δ ∈ Der(S) arbitrary. Then
Sann and Z(S) are invariant subspaces of δ.

Proof. For any x, y ∈ S we have

δ(x a y − x ` y) = δ(x a y)− δ(x ` y)
= (δx a y + x a δy)− (δx ` y + x ` δy)
= (δx a y − δx ` y) + (x a δy − x ` δy), (15)

thus δz ∈ Sann for all z ∈ Sann. Let us suppose that z ∈ Z(B) then for any
x ∈ S we have δz ` x = δz ` x+ z ` δx = δ(z ` x) = δ0 = 0. In a similar form
is possible to show that x a δz = 0. It follows that δz ∈ Z(S). The Lemma has
been proved.

Definition 8 Let (S,`,a) be a left-symmetric dialgebra. Suppose that there
exists an ideal I such that Sann ⊂ I ⊂ Z(S) for which S = I ⊕A as subspaces,
where A is a left-symmetric subdialgebra of S. Then S is called a split left-
symmetric dialgebra.

Note that if S = Sann⊕A is split then A is a left-symmetric algebra. In fact
if x, y ∈ A are arbitrary, then x a y−x ` y ∈ Sann∩A, hence x a y−x ` y = 0.

Let us assume now that the split left-symmetric dialgebra S = Sann⊕A has
a bar unit e. Consider the decomposition e = eann + eA holds, then ε = eA is a
unit of A. More even ε is a unit of S and any unit of S can be written as i+ ε.

Theorem 9 Let (A, ·) be a left-symmetric algebra and let I be a bimodule over
A. We define two products on S = I ⊕A as follows

(i1 + a1) ` (i2 + a2) = a1i2 + a1a2, (i1 + a1) a (i2 + a2) = i1a2 + a1a2. (16)

Assume that the following equalities hold

i(ab)− (ia)b = a(ib)− (ai)b, c(dj)− (cd)j = d(cj)− (dc)j, (17)

for every i, j ∈ I and all a, b, c, d ∈ A. Then (S,`,a) is a left-symmetric
dialgebra. On other hand Sann = {ia− bj| i, j ∈ I and a, b ∈ A}.

Proof. the proof is a simple calculation.
It is clear that the left-symmetric dialgebra which was constructed in the

previous Theorem is split.
We know that if (S,`,a) is a lef-symmetric dialgebra then Leib(S) is a

Leibniz algebra. Assume now that S = Sann ⊕ A is split. Let x ∈ S be given
then we denote by a(x) its projection on A. We say that x and y are Leib(S)-
equivalent if a(x) = a(y) in whose case we write x ∼ y. It is clear that ∼
constitutes a relation of equivalence for which the classes of equivalence have
the form =x = {i + a(x)|i ∈ Sann}. Observe that for all y ∈ =x we have
L`y = L`a(x) where D(L`a(x)) = S. Since the map a(x) : S −→ A is linear then it
is easy to see that < = {=x|x ∈ S} is vector space by to define =x +=y = =x+y
and λ=x = =λx for allx, y ∈ S and λ an arbitrary scalar.

Define now
=x ` =y = =x`y, =x a =y = =xay, (18)
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then (<,`,a) is a left-symmetric dialgebra and the map = : S −→ < defined as
=(x) = =x is a morphism of left-symmetric dialgebras. Obviously

[=x,=y]< = =[x,y]S . (19)

Below we introduce affine Leibniz structures on Leibniz algebras

Definition 10 Let (L, [·, ·]) be a Leibniz algebra. A pair (51,52) of bilinear
mappings

51 : L× L −→ L, (20)

and
52 : L× L −→ L, (21)

is called an affine Leibniz structure if

52(x, y)−51(y, x) = [x, y], (22)

51(51(x, y), z) = 51(52(x, y), z), 52(x,52(y, z)) = 52(x,51(y, z)), (23)

52(x,52(y, z))−51(y,52(x, z)) = 52([x, y], z), (24)

and
51(x,51(y, z))−51(y,51(x, z)) = 51([x, y], z), (25)

for all x, y, z ∈ L.

We have

Theorem 11 Let (L, [·, ·]) be a Leibniz algebra and let (51,52) be an affine
Leibniz structure. Then L is a left-symmetric dialgebra with ` and a defined as

x ` y = 51(x, y), x a y = 52(x, y). (26)

Proof. (23) implies (8) and (9). On other hand, (10) and (11) follow of (24)
and (25) respectively.

Affine transformations defined over left-symmetric
dialgebras

In this section we shall study affine transformations over left-symmetric dialge-
bras.

Let (S,`,a) be a left-symmetric dialgebra given. We choose a point s0 ∈ S
and then we associate to each x ∈ S two special affine transformations as follows

D`x (s) = x ` (s− s0) + x = L`x(s− s0) + x, (27)

and
Dax (s) = x a (s− s0) + x = Lax(s− s0) + x. (28)

It is clear that D(S)` = {D`x |x ∈ S} and D(S)a = {Dax |x ∈ S} can be
considered vector spaces.
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Theorem 12 Let us define in D(S)` the following bracket

[D`x , D
`
y ]l(s) = L`xD

`
y (s)− L`yD`x (s), (29)

for all s ∈ S and any x, y ∈ S. Then

[D`x , D
`
y ]l(s) = D`[x,y]S (s), (30)

and (D(S)`, [., .]l) is a Leibniz algebra.

Proof. In order to simplify the notation in the calculations of the proof of
this Theorem where appropriate we write [x, y] instead of [x, y]S . A simple
calculation shows that

[D`x , D
`
y ]l(s) = x ` (y ` (s− s0))− y ` (x ` (s− s0)) + [x, y]S .

From this last equality, (9) and (11) follow at once (30). Now, we must verify
the Leibniz identity for [., .]l. In fact, using (30) we have

[D`x , [D
`
y , D

`
z ]l]l(s) = [D`x , D

`
[y,z]]l(s) = D`[x,[y,z]](s)

= D`[[x,y],z]−[[x,z],y](s) = D`[[x,y],z](s)−D
`
[[x,z],y](s)

= [D`[x,y], D
`
z ]l(s)− [D`[x,z], D

`
y ]l(s)

= [[D`x , D
`
y ]l, D`z ]l(s)− [[D`x , D

`
z ]l, D`y ]l(s),

thus (D(S)`, [., .]l) is a Leibniz algebra.
This result acquires special significance by the fact that both L`xD

`
y and

L`yD
`
x (s) do not belong to D(S)`, hence they could not be used to define a

structure of left-symmetric dialgebra on D(S)`.
The following result has the same features as above, thus we have

Theorem 13 If in D(S)a we introduce the bracket

[Dax , D
a
y ]r(s) = LaxD

a
y (s)− L`yDax (s), (31)

for all s ∈ S and any x, y ∈ S. Then the following equality

[Dax , D
a
y ]r(s) = Da[x,y]S (s), (32)

holds and (D(S)a, [., .]r) is a Leibniz algebra.

Proof. The proof of this Theorem is similar to the proof of the previous The-
orem except that to prove (32) we use (10) instead of (11).

Let us suppose that S = Sann ⊕ A is a split left-symmetric dialgebra. Set
x = i(x) + a(x), s = i(s) + a(s) and s0 = i(s0) + a(s0) then

D`xs = Dann,`
a(x) i(s) +DA,`

a(x)a(s), (33)

where Dann,`
a(x) i(s) = a(x) ` (i(s) − i(s0)) + i(x) and DA,`

a(x)a(s) = a(x)(a(s) −
a(s0))+a(x). Obviously Dann,`

a(x) i(s) ∈ Sann and DA,`
a(x)a(s) ∈ A. Moreover DA,`

a(x)

can be considered as an affine transformations over A. We understand that the
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notation Dann,`
x i(s) and DA,`

x would be more appropriate to denote Dann,`
a(x) and

DA,`
a(x) respectively but we maintain the last for convenience, even more, both

will be used interchangeably.
On other hand, of (33) one concludes that

D`[x,y]S (s) = Dann,`
[a(x),a(y)]i(s) +DA,`

[a(x),a(y)]a(s), (34)

Now a simple calculation leads to equality

[D`x , D
`
y ]l(s) =(L`a(x)D

ann,`
a(y) − L

`
a(y)D

ann,`
a(x) )(i(s))

+ (L`a(x)D
A,`
a(y) − L

`
a(y)D

A,`
a(x))(a(s)), (35)

hence, combining equations (30), (34) and (35) one obtains

(L`a(x)D
A,`
a(y) − L

`
a(y)D

A,`
a(x))(a(s)) = DA,`

[a(x),a(y)]a(s) = DA,`
[x,y]a(s), (36)

and

(L`a(x)D
ann,`
a(y) − L

`
a(y)D

ann,`
a(x) )(i(s)) = Dann,`

[a(x),a(y)]i(s) = Dann,`
[x,y] i(s). (37)

The equality (36) implies that we can state the following result

Proposition 14 Let us assume that S = Sann ⊕ A is a split left-symmetric
dialgebra. Then, the vector space DA,`(S) = {DA,`

a(x) = DA,`
x |x ∈ S} is a Lie

algebra with respect to the bracket defined in the form

[DA,`
a(x), D

A,`
a(y)]a(s) = [DA,`

x , DA,`
y ]a(s) = (L`a(x)D

A,`
a(y) − L

`
a(y)D

A,`
a(x))a(s), (38)

for all x, y ∈ S.

Proof. It is clear that (L`a(x)D
A,`
a(y) − L

`
a(y)D

A,`
a(x))(a(s)) ∈ A. On other hand,

the Leibniz identity follows of (36).
Observe that the expression (L`a(x)D

ann,`
a(y) −L

`
a(y)D

ann,`
a(x) )(i(s)) does not de-

fine a Lie bracket on Dann,`(S) = {Dann,`
a(x) |x ∈ S} despite (37). This is because

in

Dann,`
[a(x),a(y)]i(s) = Dann,`

[x,y] i(s) = [a(x), a(y)] ` (i(s)− i(s0)) + [i(x), a(y)]S , (39)

the term [i(x), a(y)]S does not allow us to obtain the Jacobi identity.
It is easy to see that if we define

[Dann,`
a(x) , Dann,`

a(y) ](i(s)) = [Dann,`
x , Dann,`

y ](i(s))

= (L`a(x)D
ann,`
a(y) − L

`
a(y)D

ann,`
a(x) )(i(s)), (40)

then
[D`x , D

`
y ](s) = [Dann,`

a(x) , Dann,`
a(y) ](i(s)) + [DA,`

a(x), D
A,`
a(y)](a(s)). (41)

Thus, we have a less obvious result

Proposition 15 For a split left-symmetric dialgebra S = Sann ⊕A, the vector
space Dann,`(S) = {Dann,`

a(x) = Dann,`
x |x ∈ S} is a Leibniz algebra with respect

to the bracket (40).
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Proof. We already know that for any s ∈ S

[D`x , D
`
[y,z]S

]ls = [D`[x,y]S , D
`
z ]ls− [D`[x,z]S , D

`
y ]ls, (42)

now, from (41) one obtains

[D`x , D
`
[y,z]S

]ls = Dann,`
[a(x),[a(y),a(z)]]i(s) +DA,`

[a(x),[a(y),a(z)]]a(s),

[D`[x,y]S , D
`
z ]ls = Dann,`

[[a(x),a(y)],a(z)]i(s) +DA,`
[[a(x),a(y)],a(z)]a(s),

and
[D`[x,z]S , D

`
y ]ls = Dann,`

[[a(x),a(z)],a(y)]i(s) +DA,`
[[a(x),a(z)],a(y)]a(s).

But, since DA,`(S) is a Lie algebra and DA,`−x = DA,`−a(x) = −DA,`x =
−DA,`a(x) then substituting the previous expressions in (42) we arrive to the
following equality

Dann,`
[a(x),[a(y),a(z)]]i(s) = Dann,`

[[a(x),a(y)],a(z)]i(s)−D
ann,`
[[a(x),a(z)],a(y)]i(s), (43)

now, it follows of (37), (40) and (43) that the Leibniz identity holds for the
bracket (40).
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